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Spatiotemporal stability and control of one-way open coupled Lorenz systems
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We investigate the spatiotemporal stability of a homogeneous solution in one-way open coupled Lorenz
systems, and suppress the spatial instability in the systems by using theH` control technique. The suppression
is illustrated with numerical simulations. In addition, it is shown that the suppression can be also achieved for
one-way ring-type systems.
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I. INTRODUCTION

The spatial extended systems, which generate com
behavior, have created considerable interest. Among var
spatial extended systems, coupled map lattices~CML’s! are
considered as typical spatial systems@1#. The CML’s can be
classified into several types according to the connection
the boundary condition; the one-way open CML has be
investigated as a simple open flow model@1–6#. The CML
has a homogeneous solution corresponding to a laminar fl
Kaneko found that the solution becomes unstable even i
eigenvalues of the Jacobi matrix around the solution are
the unit circle@2#. We refer to this phenomenon as the spa
instability. Yamaguchi investigated this phenomenon in de
and derived the instability condition@6#. In recent years, it
was shown that this phenomenon can be clarified by us
the H` norm, which plays important roles in the field o
robust control theory@7#. This approach was easily extende
to continuous-time systems@8,9#.

On the other hand, controlling chaos is one of the attr
tive subjects in the field of nonlinear science@10–16#. The
most studies on controlling chaos are based on two m
control methods: the Ott-Grebogi-Yorke method@17# and the
delayed feedback control~DFC! method@18#. Both of them
stabilize the desired unstable periodic orbits embed
within a chaotic attractor only by a small feedback sign
Recently, controlling spatiotemporal chaos in the spatial
tended systems, such as partial differential equatio
coupled ordinary differential equations, and CML, h
gained more and more attention@14,19–22#.

The spatial instability in the one-way open CML is simil
to a turbulent flow in pipes. Hence, the suppression of
spatial instability corresponds to the maintenance of lam
flow. From an engineering point of view, the suppress
would be important for avoiding the harmful turbulenc
Very recently, it was shown that the spatial instability
one-way open CML can be suppressed by the decentra
DFC method@23#.

The purpose of the present paper is to show that theH`

control technique can suppress the spatial instability
continuous-timesystems. This technique has been used a
major method in the field of robust control theory; therefo
there are several useful software packages which suppor
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analysis and the design of control systems@24–29#. This
paper employs the one-way open coupled Lorenz syst
@30# ascontinuous-timesystems.

The plan of this paper is as follows. In Sec. II, we intr
duce the one-way open coupled Lorenz systems, and exp
the definition of spatiotemporal stability by numerical sim
lations. In Sec. III, we propose a control scheme which s
presses the spatial instability. Section IV discusses our
sults. Finally we conclude our work in Sec. V.

II. ONE-WAY OPEN COUPLED LORENZ SYSTEMS

A. Spatiotemporal stability

Let us consider the one-way open coupled Lorenz syst
proposed in Ref.@30#:

j̇1~ i !5s$j2~ i !2j1~ i !%,

j̇2~ i !5g$«j1~ i 21!1~12«!j1~ i !%2j2~ i !2j1~ i !j3~ i !,

j̇3~ i !5j1~ i !j2~ i !2bj3~ i !,
~1!

where i 51,2,...,N is the system number,N represents the
size of the coupled systems,j1( i ),j2( i ), j3( i )PR are the
states of systemi, and the parameter«P@0,1# represents the
coupling strength. The upper edge is fixed atj1(0)5j1 f ,
then system~1! has the following homogeneous solution:

@j1~ i ! j2~ i ! j3~ i !#T5@j1 f j2 f j3 f #
T ~2!

for all i 51,2,...,N. The constant valuesj1 f ,j2 f ,j3 f satisfy

05s~j2 f2j1 f !,
05g$«j1 f1~12«!j1 f%2j2 f2j1 fj3 f ,
05j1 fj2 f2bj3 f ,

and they are the same as the fixed point of the uncoup
~i.e., «50! Lorenz system. Forg<1, system~1! has a
unique fixed point:

@j1 f j2 f j3 f #
T5@0 0 0#T. ~3!

For g>1, fixed point~3!, and

@j1 f j2 f j3 f #
T5@6Ab~g21! 6Ab~g21! g21#T

~4!

coexist in system~1! @31#.
©2002 The American Physical Society03-1
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FIG. 1. Linearized system around the hom
geneous solution.
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The present paper considers the spatiotemporal stab
of homogeneous solution~2! on the basis of Ref.@8#. The
linearized dynamics around solution~2!, illustrated in Fig.
1~a!, is described by

ẋ~ i !5Ax~ i !1bww~ i !,
z~ i !5czx~ i !, ~5!

where

x~ i !5@j1~ i !2j1 f j2~ i !2j2 f j3~ i !2j3 f #
T,

z~ i !5j1~ i !2j1 f , w~ i !5j1~ i 21!2j1 f ,

A5F 2s s 0

g~12«!2j3 f 21 2j1 f

j2 f j1 f 2b
G ~6!

bw5@0 g« 0#T, cz5@1 0 0#.

The homogeneous solution~2! in system~1! corresponds to
x( i )50 (i 51,2,...,N) in the linearized system~5!. Hence, in
other words, solution~2! is stable if and only if limt→`x( i )
50 for all i 51,2,...,N.

In order to clear the input-output relation, we shall use
frequency domain description of system~5!:

Zi~s!5G~s!Wi~s!. ~7!

Zi(s) and Wi(s) are the Laplace transformations ofz( i ),
w( i ), respectively. The transfer functionG(s) is given as

G~s!5cz~sI32A!21bu , ~8!

whereI3PR3 is a unit matrix. Figure 1~b! illustrates system
~7!.

Now let us assume the ideal situation where there is
external noise in real systems or no round-off-error on co
puter simulations:w(1)[0 @i.e.,j1(0)[j1 f#. If A is a stable
matrix @32#, i.e., G(s) is a stable transfer function@33#, the
system statex(1) of system 1 will converge on 0. Thus, w
have limt→`z(1)5 limt→`w(2)50 @i.e., limt→`j1(1)5j1 f#.
We also have the same convergence in lower systems; th
fore, the states of all systems behave as limt→`x( i )50 for
all i 51,2,...,N.

In real systems~computer simulations! the states of all
systems slightly oscillate around the homogeneous solu
~2! due to the external noise~round-off-error!. In this case,
we should consider an influence of the noise propagat
Reference@8# provided the spatiotemporal stability whic
takes the noise propagation into account.
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Definition 1. The spatiotemporal stability of the homog
neous solution~2! in system~1! is classified into the follow-
ing three types@8#.

~1! If G(s) is unstable, it is temporally unstable~TU!.
~2! If G(s) is stable andiG(s)i`,1, it is temporally and

spatially stable~TSS!.
~3! If G(s) is stable andiG(s)i`.1, it is temporally

stable and spatially unstable~TSSU!.
In the field of control theory, it is well known that theH`

norm of the transfer function is defined byiG(s)i`

ªsupvPRuG( j v)u. This norm indicates the influence of th
input w( i ) on the outputz( i ) in the worst case.

We shall explain the above definition briefly on the ba
of Ref. @8#. In the case of TU, each system oscillates due
the unstable transfer functionG(s) even if the input signal is
fixed at w( i )[0. Thus, none of the systems converge
solution ~2!. In the case of TSSU, we have an inclination
believe limt→`uz( i )u50 (i 51,2,...,N), sinceG(s) is a stable
function. However, this is not true. The reason is that
external noise in real systems or the round-off error on co
puter simulations affects the lower systems. As a result,
states in lower systems cannot stay on solution~2!. In the
case of TSS, the output signals in lower systems converg
0 even if the upper systems oscillate with small amplitud

B. Numerical simulations

We shall confirm our theoretical results by numeric
simulations. Throughout this paper we use the standard
rameters:s510 andb58/3. The parametersg and « are
varied: 1,g and 0<«<1. We focus on solution~2! consist-
ing of j1 f5Ab(g21), j2 f5Ab(g21), j3 f5g21 in Eq.
~4!. If we consider the other fixed point in Eq.~4!, we will
have the similar result. In this paper, the well-known Rung
Kutta algorithm with time stepsDt50.01 is used for the
numerical integration. The tiny external noise signal is add
to the upper edge:j1(0)5j1 f10.1r(nDt), where 21
<r(nDt)<11 is a uniform random value.

First of all, we examine the spatiotemporal stability
homogeneous solution~2! in the Lorenz systems. Figure
provides the stability regions on the parameter spaceg2«.
This figure is obtained by the following procedure:~1! for a
parameter set~g,«!, the transfer functionG(s) is derived
from Eq. ~8!; ~2! if G(s) is unstable, a dot is plotted at th
parameter set as TU and go to Step~5!, otherwise go to the
next step;~3! if G(s) is stable andiG(s)i`,1, a square is
plotted as TSS and go to Step~5!, otherwise go to the nex
step; ~4! if G(s) is stable andiG(s)i`.1, a small dot is
plotted as TSSU and go to the next step;~5! the parameter se
~g, «! is changed to a new parameter set and go back to S
3-2
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~1!. This procedure can be achieved by a simple progr
using the software@29#. From Fig. 2, we notice that the larg
part of the parameter space is occupied by the TSSU reg

The system behavior in the TU region is shown in Fig.
The statej1(1) at the upper edge oscillates, and such os
lation is observed in all systems. Now we focus on the TS
region. The gainuG( j v)u is plotted as a function ofv in Fig.
4~a!. We notice that the peak gain, i.e.,iG(s)i` , is greater
than 1. Hence, the external noise including a frequency ba
width in which the gain is greater than 1 increases dow
stream, and then the lower systems oscillate. Figure~b!
shows the waveforms of the coupled Lorenz systems in
TSSU region. The upper edge systemj1(1) has little oscil-
lation; however, the amplitude of oscillations increas
downstream. Eventually, we can observe chaotic behavio
the lower systems. Figure 5~a! shows the gain diagram o
G(s) in the TSS region. It can be seen that the peak gai
less than 1. The waveforms in the TSS region are show
Fig. 5~b!. It should be noted that the scale of the vertical a

FIG. 2. Spatiotemporal stability of the coupled Lorenz system

FIG. 3. Waveforms of the coupled Lorenz systems in TUg
550,«50.05).
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in Fig. 5~b! is quite different from Figs. 3 and 4~b!. The
influence of the upper edge noise decreases downstream
lower systems we cannot observe the disturbance at
These numerical results agree well with our theoretical
sults.

III. SUPPRESSION BY H ` CONTROL

Solution ~2! in TSSU is similar to a turbulent flow in
pipes. The suppression of the spatial instability would be
important subject. This section proposes a control metho
convert from the TSSU state~turbulent flow! to the TSS state
~laminar flow!.

A. Proposal of control system

We propose the control system as shown in Fig. 6~a!. This
figure describes the only systemi; all systems have the sam
structure. Systemi is given as

j̇1~ i !5s$j2~ i !2j1~ i !%1u~ i !,

j̇2~ i !5g$«j1~ i 21!1~12«!j1~ i !%2j2~ i !2j1~ i !j3~ i !,

j̇3~ i !5j1~ i !j2~ i !2bj3~ i !.
~9!

.

FIG. 4. Gain diagram and waveforms of the coupled Lore
systems in TSSU (g528,«50.1).
3-3
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u( i )PR is the control signal, and the feedback fromj1( i ) to
u( i ) is

ẋ̂~ i !5Kax̂~ i !1kby~ i !,
u~ i !5kcx̂~ i !,

~10!

y~ i !5H j1~ i !2j1 f d~ i !,n,

0 d~ i !>n,
~11!

d~ i !5$@j1~ i !2j1 f #
21@j2~ i !2j2 f #

21@j3~ i !2j3 f #
2%.

x̂( i )PR3 is the state of controller~10! and KaPR333, kb
PR331, kcPR133 are the feedback gains we have to det
mine in advance. Limiter~11! can prevent controller~10!
from adding the large signal to the system, since suc
signal might make the control system fall into a divergen
regime. The thresholdn.0 is set to a small positive value
however, it cannot be designed systematically.

It must be emphasized that solution~2! of coupled system
~1! does not change even if controller~10! and limiter ~11!
are connected to the system. In other words, if the feedb

FIG. 5. Gain diagram and waveforms of the coupled Lore
systems in TSS (g510,«50.1).
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-

a
e

ck

gains are suitable, then we can change only the stability
the solution. The linearized system of the controlled Lore
system~9! around the solution is@see Fig. 6~b!#

ẋ~ i !5Ax~ i !1bww~ i !1buu~ i !,
z~ i !5cxx~ i !,
y~ i !5cyx~ i !,

~12!

for i 51,2,...,N, wherebu5@1 0 0#T andcy5@1 0 0#. We can
transform from the linearized system~12! to the frequency
domain description@see Fig. 6~c!#:

Zi~s!5Ḡ~s!Wi~s!. ~13!

Since system~13! corresponds to system~7!, we have to
design the feedback gains such thatḠ(s) is stable and
iḠ(s)i`,1, whereḠ(s) is given by

z

FIG. 6. Proposed system and its linearized system around
homogeneous solution.
3-4
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Ḡ~s!5H11~s!1H12~s!K~s!@12H22~s!K~s!#21H21~s!,

H11~s!ªcz~sI2A!21bw , H12~s!ªcz~sI2A!21bu ,

H21~s!ªcy~sI2A!21bw , H22~s!ªcy~sI2A!21bu ,

K~s!ªkc~sI2Ka!21kb .

B. Design of controller

Now we provide a problem statement how to design c
troller ~10!.

~Design problem!. Design the feedback gainsKa , kb , kc

such thatḠ(s) is stable andiḠ(s)i`,1.
This is known as the ‘‘suboptimalH` control problem.’’

Ḡ(s) is a transfer function of the closed-loop system cons
ing of H(s) and K(s) @see Fig. 6~c!#. iḠ(s)i` is the H`

norm of the transfer functionḠ(s), which is the random-
mean square gain fromw( i ) to z( i ). This problem seeks a
stabilizing controllerK(s) that ensures the following: th
effect of the worst case disturbancew( i ) on the outputz( i )
will be less than 1. In general, it is difficult to solve th
problem theoretically; however, this problem is equivalent
a finding solutions to linear matrix inequalities~LMI’s !. The
solutions to the LMI’s form a convex set; therefore, the pro
lem is reduced to a quasiconvex optimization problem wh
can be solved numerically. In other words, theH` control
problem can be solved on computer simulations via L
formulation. The concrete algorithms for solving this pro
lem is given in Refs.@24–27#. The powerful software
@28,29# allows us to obtain the suitable feedback gains
using simple commands. Since the explanation of the LM
basedH` control has no connection with our main subje
we may leave the details to Refs.@28#, @29#.

C. Numerical simulations

Now we shall try to make a homogeneous solution~2! in
the TSSU region be the TSS state. We confirmed on num
cal simulations that most of the TSSU region in Fig. 2 can
converted to the TSS region via the LMI-basedH` control
@34#. As an example, we shall convert the TSSU state in F
4 to the TSS state. The software of the LMI-basedH` con-
trol provides the following suitable feedback gains@35#:

FIG. 7. Gain diagram of the coupled Lorenz system with a
without control (g528,«50.1).
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Ka5F 214.500 24.933 2.198

29.710 24.943 28.424

37.754 14.198 26.218
G

kb5@0.952 15.791 238.545#T,

kc5@20.789 23.900 10.711#.

The transfer functionḠ(s) with the above gains has th
poles @29.1366j21.038,22.8656j9.227,23.901,211.423#;
therefore,Ḡ(s) is a stable matrix. Figure 7 provides the ga
diagram. The gainuG( j v)u without control has the peak
greater than 1; on the contrary, the peak of the gainuḠ( j v)u
with control is reduced to 0.548. The waveforms and
control signal are shown in Fig. 8. The limiter threshold
set ton50.1. The control starts at timet5200. We can ob-
serve that system statesj1( i ) ( i 51,2,...,N) converge onj1 f
in the order of the system numberi. It can be seen tha
control signalu(50) is within a small range. If the limiter
threshold is set to large values, we can observe the follow
phenomena: the time period for the system convergence
comes short; the control signal becomes large. In ot
words, our control method has a tradeoff between the c
vergent time and the size of control signal. The tradeoff
not a particular relation, since there is such a relation in
most of methods for controlling chaos.

d

FIG. 8. Waveforms and input signal of the coupled Lorenz s
tems with control (g528,«50.1,n50.1).
3-5
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IV. DISCUSSIONS

The above results are for the one-wayopencoupled Lo-
renz systems. Now, we consider system~1! with j1(0)
[j1(N), which describes the one-wayring coupled Lorenz
systems; the upper edge system is connected to the lo
edge one. This section focuses on the ring-type system
the basis of the above results.

The homogeneous solution~2! in the open-type system
~1! is the same as that in the ring-type system. The lineari
system around solution~2! in the controlled ring-type system
is described by

Zi~s!5Ḡ~s!Zi 21~s! for i 51,2,...,N,

Z0~s!5ZN~s!. ~14!

FIG. 9. Waveforms and input signal of the one-way ring coup
Lorenz systems with control (g528,«50.1,N550,n52.5).
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From the small gain theorem@36#, the stability condition of
system~14! can be simplified as follows: the transfer fun
tion Ḡ(s) is stable andiḠ(s)i`,1. We notice that this con-
dition is identical to the condition for the open-type syste
to be TSS. Therefore, controller~10! designed by the LMI-
based approach for the open-type systems can be dire
applied to the ring-type systems.

Figure 9 shows the numerical stabilization of the one-w
ring coupled Lorenz systems. The parameters and the
troller are the same as Fig. 8. We do not add the noise si
to the systems. All systems behave chaotically; this phen
enon is quite different from the TSSU state in the open-ty
systems. The control starts att5200. The limiter threshold is
set to n52.5. The bottom of Fig. 9 is the control signa
u(36). It can be seen that the amplitude of this signal is la
compared with that in Fig. 8 due to the large thresholdn.
Unfortunately, we cannot clear the mechanism of the tr
sient behavior in the controlled systems. There is room
further investigation.

V. CONCLUSION

We have shown that theH` control based on the LMI can
suppress the spatial instability in the one-way open coup
Lorenz systems. Additionally, we have considered that
approach is also useful for ring-type systems.

This paper has shown only the theoretical and numer
results; therefore, we have to confirm these results by
experimental circuits@9#. Our approach requires the contro
ler whose dimension is the same as the dimension of e
system; on the contrary, low dimensional controllers a
more desirable from the practical point of view. Therefo
we will have to examine reducing the controller dimensio
Furthermore, in our approach, the controller is added to
systems. This is not convenient for practical situatio
hence, we plan in the future to discuss the reduction of
controller density.
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