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Spatiotemporal stability and control of one-way open coupled Lorenz systems
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We investigate the spatiotemporal stability of a homogeneous solution in one-way open coupled Lorenz
systems, and suppress the spatial instability in the systems by usikl, tbentrol technique. The suppression
is illustrated with numerical simulations. In addition, it is shown that the suppression can be also achieved for
one-way ring-type systems.
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I. INTRODUCTION analysis and the design of control systef@4-29. This
paper employs the one-way open coupled Lorenz systems

The spatial extended systems, which generate complehd0] ascontinuous-timesystems.
behavior, have created considerable interest. Among various The plan of this paper is as follows. In Sec. II, we intro-
spatial extended systems, coupled map latti@¥L's) are  duce the one-way open coupled Lorenz systems, and explain
considered as typical spatial systefi$ The CML's can be the definition of spatiotemporal stability by numerical simu-
classified into several types according to the connection ant@tions. In Sec. Ill, we propose a control scheme which sup-
the boundary condition; the one-way open CML has beerpresses the spatial instability. Section IV discusses our re-
investigated as a simple open flow modi#-6]. The CML  sults. Finally we conclude our work in Sec. V.
has a homogeneous solution corresponding to a laminar flow.
Kaneko found that the solution becomes unstable even if all 1I. ONE-WAY OPEN COUPLED LORENZ SYSTEMS
eigenvalues of the Jacobi matrix around the solution are in
the unit circle[2]. We refer to this phenomenon as the spatial
instability. Yamaguchi investigated this phenomenon in detail Let us consider the one-way open coupled Lorenz systems
and derived the instability conditiof6]. In recent years, it proposed in Ref{30]:
was shown that this phenomenon can be clarified by using .
the H,. norm, which plays important roles in the field of £&1(i)=0{&x(i)—&1(i)},
robust control theorﬂ?]. This approach was easily extended  &,(i)=y{e&(i—1)+(1— )& (i)} — &) — &1(i) &),
to continuous-time systenis,9]. ©o . .

On the other hand, controlling chaos is one of the attrac- &a(i)=&1(1) &2(1) = B&a(i), 0
tive subjects in the field of nonlinear scienc—16. The
most studies on controlling chaos are based on two majfherei=1,2,...N is the system numbel\ represents the
control methods: the Ott-Grebogi-Yorke methdd] and the  gjze of the coupled systemé;(i),&(i), &(i) R are the
delayed feedback contr¢DFC) method[18]. Both of them  states of systeri) and the parametare [0,1] represents the
stabilize the desired unstable periodic orbits embeddegoupnng strength. The upper edge is fixedéat0)= &,

within a chaotic gttractor.only by a small feedback s.ignal.then systeni1) has the following homogeneous solution:
Recently, controlling spatiotemporal chaos in the spatial ex-

A. Spatiotemporal stability

tended systems, such as partial differential equations, [£.31) &) &(D]T=[&y Ex¢ Ex]T 2

coupled ordinary differential equations, and CML, has

gained more and more attentipt4,19-22. for all i=1,2,...N. The constant value&;;,&, ;,&3¢ Satisfy
The spatial instability in the one-way open CML is similar

to a turbulent flow in pipes. Hence, the suppression of the 0=0(& 1= &wr),

spatial instability corresponds to the maintenance of laminar O=yeéirt(1—e)éurf—&x¢— Earéar,

flow. From an engineering point of view, the suppression 0=¢1¢é2¢— Béas,

would be important for avoiding the harmful turbulence. . .
Very recently, it was shown that the spatial instability in @and they are the same as the fixed point of the uncoupled
one-way open CML can be suppressed by the decentralizééi€., e=0) Lorenz system. Fory<1, system(l) has a

DFC method 23]. unique fixed point:
The purpose of the present paper is to show thatthe T T
control technique can suppress the spatial instability in [€1r €21 &) =[0 O O] ©)

continuous-timesystems. This technique has been used as
major method in the field of robust control theory; therefore,

there are several useful software packages which support tll%1f & Ex]T=[= /—B(y— 1) =+ /—,3(7— 1) y—1]"
(4)

Bor v=1, fixed point(3), and

*Electronic address: konishi@ecs.ees.osakafu-u.ac.jp coexist in systengl) [31].
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System 1 System 2
’l () = Ax(D) + bpw(l) i| {.%(2) = Ax(2) + bpw(2) .
w(1)=0 { 2 (1) = ¢, x(1) 1) =w(2) z2(2) = ¢:x(2) 22)=w(3) . .
(a) FIG. 1. Linearized system around the homo-
System 1 System 2 geneous solution.
—)I G(s) —)I G(s) e 2R
Wi(s) Z1(s) = Wa(s) Za(s) = Wa(s)

(b)

The present paper considers the spatiotemporal stability Definition 1 The spatiotemporal stability of the homoge-
of homogeneous solutiof®) on the basis of Refl8]. The  neous solutior{2) in system(1) is classified into the follow-
linearized dynamics around solutidg), illustrated in Fig. ing three typeg$8].

1(a), is described by (1) If G(s) is unstable, it is temporally unstabl€U).
o . . (2) If G(s) is stable and G(s)||.<1, it is temporally and
X(1)=Ax(i) +byw(i), (5)  Spatially stableTSS.
z(i)=cXx(i), (3) If G(s) is stable and|G(s)|..>1, it is temporally

stable and spatially unstab(@SSU.

where In the field of control theory, it is well known that thd.,
(V=T & (i) — i) — i) — &7, norm of the transfer function is defined bYyG(S)]..
W=la =& &= &)~ :=sup, .r|G(jw)|. This norm indicates the influence of the
zZ()=&()— &, W(I)=&(—1)— &y, input w(i) on the outputz(i) in the worst case.
! Y ' Y We shall explain the above definition briefly on the basis
o o 0 of Ref.[8]. In the case of TU, each system oscillates due to

the unstable transfer functidd(s) even if the input signal is

A=| y(1—-e)—&x —1 —&yi ®  fixed at w(i)=0. Thus, none of the systems converge on
&t & —B solution(2). In the case of TSSU, we have an inclination to

believe lim_..|z(i)|=0 (i=1,2,...N), sinceG(s) is a stable
by=[0 ye 01", ¢c,=[1 0 O] function. However, this is not true. The reason is that the

) ) external noise in real systems or the round-off error on com-
The homogeneous solutid@) in system(1) corresponds to  ,\ter simulations affects the lower systems. As a result, the
x(1)=0 (i=1,2,...N) in the linearized syster(6). Hence, i giates in lower systems cannot stay on solu@n In the
other words, solutiori2) is stable if and only if lim_..x(I)  case of TSS, the output signals in lower systems converge on

=0 foralli=1,2,..N. . 0 even if the upper systems oscillate with small amplitude.
In order to clear the input-output relation, we shall use the

frequency domain description of systds):
B. Numerical simulations

Zi(s)=G(s)Wi(s). () We shall confirm our theoretical results by numerical

simulations. Throughout this paper we use the standard pa-

rameters:c=10 and 8=28/3. The parametery and ¢ are

varied: 1<y and O<e=<1. We focus on solutiof2) consist-
G(s)=c,(sl3—A) b, (8 ingof &=vB(y—1), &¢=VB(y—1), &x=y—1 in Eq.

(4). If we consider the other fixed point in E¢), we will
wherel; e R? is a unit matrix. Figure (b) illustrates system have the similar result. In this paper, the well-known Runge-
(7). Kutta algorithm with time stepat=0.01 is used for the

Now let us assume the ideal situation where there is nmumerical integration. The tiny external noise signal is added
external noise in real systems or no round-off-error on comto the upper edgei(,(0)=§&;+0.1p(nAt), where —1
puter simulationsw(1)=0 [i.e.,£1(0)=&4¢]. If Aisastable <p(nAt)<+1 is a uniform random value.
matrix [32], i.e., G(s) is a stable transfer functioi83], the First of all, we examine the spatiotemporal stability of
system statex(1) of system 1 will converge on 0. Thus, we homogeneous solutiof?) in the Lorenz systems. Figure 2
have lim_ ..z(1)=Ilim,_..w(2)=0 [i.e, lim_.&(1)=&;].  provides the stability regions on the parameter spgce.

We also have the same convergence in lower systems; therg¢his figure is obtained by the following proceduté) for a
fore, the states of all systems behave as lipx(i)=0 for ~ parameter sety,e), the transfer functiorG(s) is derived
alli=1,2,..N. from Eq. (8); (2) if G(s) is unstable, a dot is plotted at the

In real systemgcomputer simulationsthe states of all parameter set as TU and go to St&p, otherwise go to the
systems slightly oscillate around the homogeneous solutionext step;(3) if G(s) is stable andG(s)|..<1, a square is
(2) due to the external nois@ound-off-erroj. In this case, plotted as TSS and go to St€p), otherwise go to the next
we should consider an influence of the noise propagatiorstep; (4) if G(s) is stable and|G(s)|..>1, a small dot is
Reference[8] provided the spatiotemporal stability which plotted as TSSU and go to the next stéf);the parameter set
takes the noise propagation into account. (v, €) is changed to a new parameter set and go back to Step

Zi(s) and W;(s) are the Laplace transformations bfi),
w(i), respectively. The transfer functidd(s) is given as
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FIG. 2. Spatiotemporal stability of the coupled Lorenz systems.

(1). This procedure can be achieved by a simple program
using the softwarg29]. From Fig. 2, we notice that the large
part of the parameter space is occupied by the TSSU region
The system behavior in the TU region is shown in Fig. 3.
The state£;(1) at the upper edge oscillates, and such oscil-
lation is observed in all systems. Now we focus on the TSSU
region. The gainG(j )| is plotted as a function ab in Fig.
4(a). We notice that the peak gain, i.4G(s)||.., is greater
than 1. Hence, the external noise including a frequency band-<
width in which the gain is greater than 1 increases down-*"
stream, and then the lower systems oscillate. Figu® 4
shows the waveforms of the coupled Lorenz systems in the
TSSU region. The upper edge systénil) has little oscil-
lation; however, the amplitude of oscillations increases
downstream. Eventually, we can observe chaotic behavior in
the lower systems. Figure(& shows the gain diagram of

G(s) in the TSS region. It can be seen that the peak gain is (b)

-20
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less than 1. The waveforms in the TSS region are shown in FIG. 4. Gain diagram and waveforms of the coupled Lorenz
Fig. 5(b). It should be noted that the scale of the vertical axiSsystems in TSSU%=28=0.1).

System 1

360 380 400
timg ———

FIG. 3. Waveforms of the coupled Lorenz systems in TY (
=50£=0.05).

in Fig. 5b) is quite different from Figs. 3 and(d). The
influence of the upper edge noise decreases downstream. In
lower systems we cannot observe the disturbance at all.
These numerical results agree well with our theoretical re-
sults.

IIl. SUPPRESSION BY H, CONTROL

Solution (2) in TSSU is similar to a turbulent flow in
pipes. The suppression of the spatial instability would be an
important subject. This section proposes a control method to
convert from the TSSU stateurbulent flow to the TSS state
(laminar flow.

A. Proposal of control system

We propose the control system as shown in Fig).6lhis
figure describes the only systamall systems have the same
structure. Systemis given as

&1(i) = o{&(1) = 1)} +u(i),
&) =y{eba(i-1)+(1-e)&a(D)} = o) — Ea(D) &5(0),

E5(i)=£&1(1) (i) — BEs(D).
(9)
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' ' Systemi
Q0w . EG-1) [
E..n(i) = f1[§1(i): gz(')] +u(i) E.ﬂ (|)
10k - e Eoli) = FIE,D, £, &40, £(1 1] > e
. Eali) = 15&,(i), &), E4()]
§10‘2 - ] u (I)
E
107 =] . 0 ; 1 2
10 10 10 10
(a) _— i \r+
491 . ? . . . Controller M—Q«—g”
System 1 (a) -
. I I I 1 Z(|—1)=W(|) . Z(|)=W(|+1)
e | ' | ' ) ' | ' Sys'temz —x@i)=Ax(@)+bwi)+bui)[
e AN AT 2i) =, x(0)
. y(i) =c, x(i) .
: : : : u(i) d y(i)
System 3
R AAAAAAAANNANNAANNANNNNAASAANNAAA~—ANANNNANNNY]
I I ' I I Sys’tem 4 Controller
s E s (b)
up
I I I I System 50 SyStemi
= - Z (9 =W(9) . Z(9) =W.+1SS)
.- H (s) e
360 ' 380 ' 400
FIG. 5. Gain diagram and waveforms of the coupled Lorenz
systems in TSS¥%=10£=0.1). K(s)
u(i) e R is the control signal, and the feedback fr@ggi) to © =
u(i) is
FIG. 6. Proposed system and its linearized system around the
(V=K (i i homogeneous solution.
x(_l) Kan(.|)+kby(|), (10)
u(i)=kex(i),

gains are suitable, then we can change only the stability of
the solution. The linearized system of the controlled Lorenz

&) =€ d(i)<w, system(9) around the solution ifsee Fig. 6b)]
yH=1, A (12)
(H=w,
X(1)=Ax(i)+b,w(i)+byu(i),
() ={L£2()~ £ 12+ [£a1) £ 12+ [EaD) — 117, iy 12

%(i) e R® is the state of controllet10) andK,e R*%, k;,  fori=1,2,...N, whereb,=[1 0 0] andc,=[10 0]. We can
e R, k.e RY? are the feedback gains we have to deterransform from the linearized systef@?2) to the frequency
mine in advance. Limite(11) can prevent controllef10)  domain descriptiofisee Fig. 6c)]:
from adding the large signal to the system, since such a
signal might make the control system fall into a divergence
regime. The threshol@d>0 is set to a small positive value;
however, it cannot be designed systematically. .
It must be emphasized that soluti(®) of coupled system Sln(_:e system(13) corresponds to sys_tenﬂ)_, we have to
(1) does not change even if controllér0) and limiter(11) ~ design the feedback gains such tha(s) is stable and
are connected to the system. In other words, if the feedbadkG(s)||..<1, whereG(s) is given by

Zi(s)=G(s)Wi(s). (13)
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T T 20— T

\ System 1 ]
20t -
[ System 15]]
FIG. 7. Gain diagram of the coupled Lorenz system with and I I ]
without control (y=28¢=0.1).
G(8)=H11(S) + H1A )K(S)[ 1~ HaA )K ()] Hau(), , , System 40]

Hii(s)=c,(sl—=A) by, Hixs)=c,(sI—A) b,

10

o _ A1 = —-A) !
Hai(s):=cy(sl =A) by, Haas)=cy(sI=A) by, System 50

K(s):=Ke(sl —Kg) Ky :

05 System 507
B. Design of controller 5’:, 0
Now we provide a problem statement how to design con- _gsE 3
troller (;0). _ . 200 300 200
(Design problem Design the feedback gais, , ky,, K¢ time ———

SUChhj[ha"Gk(s) IS stabl;z a“nd||(§(3).||x;1. | bl ., FIG. 8. Waveforms and input signal of the coupled Lorenz sys-
This is known as the “suboptiméll., control problem. tems with control §=285=0.1y=0.1).

6(5) is a transfer function of the closed-loop system consist-

ing of H(s) and K(s) [see Fig. &)]. |G(9)|.. is theH,, —14.500 —4.933 2.198
norm of the tran_sfer func_:tiorG(s_), Whi_ch is the random- K,=| —9.710 —4.943 —8.424
mean square gain fromv(i) to z(i). This problem seeks a

stabilizing controllerK(s) that ensures the following: the 37.754  14.198 —6.218
effect of the worst case disturbanegi) on the outputz(i)

will be less than 1. In general, it is difficult to solve this kp=[0.952 15.791 —38.543",
problem theoretically; however, this problem is equivalent to

a finding solutions to linear matrix inequaliti@isMI’s ). The k.=[—-0.789 —3.900 10.711

solutions to the LMI's form a convex set; therefore, the prob- -
lem is reduced to a quasiconvex optimization problem whichThe transfer functionG(s) with the above gains has the
can be solved numerically. In other words, tHe control  poles [—9.136+j21.038;-2.865+]9.227-3.901,-11.423;

problem can be solved on computer simulations via LMlherefore G(s) is a stable matrix. Figure 7 provides the gain
formulation. The concrete algorithms for solving this prOb'diagram. The gainfG(jw)| without control has the peak

lem is given in Refs.[24-27. The powerful software ] -
[28,29 allows us to obtain the suitable feedback gains bygr.ter?t(exr)rt:g? 15 (r)g dthfegopotr%r)g thge_?heeak (2 tgf%féﬁg’gé the
using simple commands. Since the explanation of the LMV ! u g wav

basedH.. control has no connection with our main subject, gce)?i:)o' ElgnlaITzZr: sgr?tvrvgl Isr:alr:tlga?.ti-rl;:(-:ce ;l(r;rgte\;v;h(r:eaihg:ad_ IS
we may leave the details to Ref£8], [29]. =t :

serve that system statég(i) (i=1,2,...N) converge oré;
in the order of the system numbeér It can be seen that
control signalu(50) is within a small range. If the limiter
Now we shall try to make a homogeneous soluti@nin  threshold is set to large values, we can observe the following
the TSSU region be the TSS state. We confirmed on numerphenomena: the time period for the system convergence be-
cal simulations that most of the TSSU region in Fig. 2 can becomes short; the control signal becomes large. In other
converted to the TSS region via the LMI-basdd control ~ words, our control method has a tradeoff between the con-
[34]. As an example, we shall convert the TSSU state in Figvergent time and the size of control signal. The tradeoff is
4 to the TSS state. The software of the LMI-baseéd con-  not a particular relation, since there is such a relation in the
trol provides the following suitable feedback ga[i38]: most of methods for controlling chaos.

C. Numerical simulations
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From the small gain theorefi36], the stability condition of
system(14) can be simplified as follows: the transfer func-

tion G(s) is stable andG(s)|..<1. We notice that this con-
dition is identical to the condition for the open-type systems
to be TSS. Therefore, controllét0) designed by the LMI-
based approach for the open-type systems can be directly
applied to the ring-type systems.

Figure 9 shows the numerical stabilization of the one-way
ring coupled Lorenz systems. The parameters and the con-
troller are the same as Fig. 8. We do not add the noise signal
to the systems. All systems behave chaotically; this phenom-
enon is quite different from the TSSU state in the open-type
systems. The control startstat 200. The limiter threshold is
set to v=2.5. The bottom of Fig. 9 is the control signal
u(36). It can be seen that the amplitude of this signal is large
compared with that in Fig. 8 due to the large thresheld
Unfortunately, we cannot clear the mechanism of the tran-
sient behavior in the controlled systems. There is room for
further investigation.

V. CONCLUSION

We have shown that the., control based on the LMI can
suppress the spatial instability in the one-way open coupled
Lorenz systems. Additionally, we have considered that our
approach is also useful for ring-type systems.

FIG. 9. Waveforms and input signal of the one-way ring coupled This paper has shown only the theoretical and numerical

Lorenz systems with controh(=28,=0.1N=50,y=2.5).

IV. DISCUSSIONS

The above results are for the one-wayencoupled Lo-
renz systems. Now, we consider systdf) with &;(0)
=¢,(N), which describes the one-waing coupled Lorenz

results; therefore, we have to confirm these results by real
experimental circuit§9]. Our approach requires the control-
ler whose dimension is the same as the dimension of each
system; on the contrary, low dimensional controllers are
more desirable from the practical point of view. Therefore,
we will have to examine reducing the controller dimension.
Furthermore, in our approach, the controller is added to all

systems; the upper edge system is connected to the lowgystems. This is not convenient for practical situations;
edge one. This section focuses on the ring-type systems Qfence, we plan in the future to discuss the reduction of the

the basis of the above results.

The homogeneous solutiaf2) in the open-type system

controller density.

(1) is the same as that in the ring-type system. The linearized

system around solutiof2) in the controlled ring-type system

is described by

Z/(s)=G(s)Z;_(s) for i=1,2,..N,

Zo(S)=ZN(S). (14
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